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Abstract. Existing approaches about defining formal semantics of com-
mitment usually consider operations as axioms or constrains on top of the
commitment semantics, which fail to capture the meaning of interactions
that are central to real-life business scenarios. Furthermore, existing se-
mantic frameworks using different logics do not gather the full semantics
of commitment operations and semantics of social commitments within
the same framework. This paper develops a novel unified semantic model
for social commitments and their operations. It proposes a logical model
based on a new logic extending CTL∗ with commitments and opera-
tions to specify agent interactions. We also propose a new definition
of assignment and delegation operations by considering the relationship
between the original and new commitment contents. We prove that the
proposed model satisfies some properties that are desirable when mod-
eling agent interactions in MASs and introduce a NetBill protocol as a
running example to clarify the automatic verification of this model. Fi-
nally, we present an implementation and report on experimental results
of this protocol using the NuSMV and MCMAS symbolic model checkers.

Keywords: Social commitments, two and three party operations, ac-
cessibility relations, the NuSMV and MCMAS model checkers.

1 Introduction

The importance of defining suitable and formal semantics of social commit-
ments has been broadly recognized for multi-agent systems (MASs). Specifically,
social commitments have been used for agent communication [22,24], artificial
institutions [15] and business modeling [11,25]. In commitment protocols, the
commitments capture a high-level meaning of messages that are exchanged be-
tween interacting agents as opposed to low-level operational representations (see
for example [30,18,11,14,7]). These protocols are more suitable for agent com-
munication than traditional protocols specified using for example Finite State
Machines and Petri Nets, which only capture legal orderings of these messages.
Particularly, expressing protocols using commitments allows these protocols to
be flexible and intuitive. This is because agents will not reason about legal se-
quences, which are generally rigid and abstract, but about concrete commit-
ment states and possible paths to reach them. In this context, some interesting
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semantic frameworks for social commitments have already been proposed us-
ing different approaches such as branching time logics (CTL∗, CTL and CTL±)
[1,2,17,22,29]. Recently, a model-theoretic semantics of social and dialogical com-
mitments based on Linear-Time Logic (LTL) has been introduced in [23] and
the proposed postulates are reproduced in [8] to define semantics of commitment
operations in distributed systems. Current semantic frameworks for social com-
mitments and associated operations fall into two main categories. In the former
category, commitment operations are formalized based on Singh’s presentation
[21] as axioms or constraints on top of commitment semantics [7,11,17,18,30].
These axioms are represented either as reasoning rules, updating rules or en-
forcing rules to evolve the truth of commitments’ states and to reason about
commitment operations explicitly to accommodate exceptions that may arise at
run-time. However, the real meanings of commitment operations themselves (e.g.
Create, Fulfill, etc.) are not captured. This makes such frameworks not general
enough to capture interoperability between heterogenous systems. In the latter
category, social commitments are formalized using object-oriented paradigm to
advance the idea of commitments as data structure [14]. Thus, the main objec-
tive of defining clear, practical, and verifiable semantics of commitments and
associated operations within the same framework for interacting autonomous
agents is yet to be reached.

Motivation. This paper addresses the above challenges by proposing a new
semantics not only for social commitments, but also for the operations used
to manipulate commitments. This semantics can be declaratively used to spec-
ify commitment protocols and some desirable properties so that the agents can
interact successfully. For automatic verification of these protocols, the seman-
tics of commitment operations should not be only captured by some enforced
rules like in [17], but also integrated in the same framework [19]. In fact, this
work is a continuation of our two previous publications [2,19]. In the former one
[2], we have developed a framework unifying commitments, actions on commit-
ments and arguments that agents use to support their actions. In the second
one [19], we have proposed a new logical semantics of social commitments and
associated two-party operations based on Branching Space-Time (BST) logic.
BST-logic enhances this semantics with agent life cycle, space-like dimension
and causal relation between interacting agents in the same (physical or virtual)
space. Specifically, here (1) we refine the semantics of some operations (e.g., Cre-
ate, Withdraw, Fulfill) to overcome the state explosion problem that arises in [2];
(2) reformulate the life cycle of commitment introduced in [19]; and (3) define
a new semantics of multi-party operations (e.g., Delegate and Assign) using a
new logic that extends CTL∗.

Contributions. The contributions of this paper are manifold: (1) a novel uni-
fied logical model for social commitments and associated operations; (2) a new
semantics of creation, withdrawal, fulfilment, violation and release operations
using the notions of accessible and non-accessible paths; and (3) new definitions
of assignment and delegation operations by taking into account the fact that
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the assigned and delegated commitment’s deadline could be different from the
deadline of the original commitment. The proposed logical model can be used
to flexibly and rigorously specify multi-agent commitment protocols and give
semantics to protocol messages in terms of creation and manipulation of the
commitments among interacting agents. Furthermore, compared to existing se-
mantic frameworks for commitments, this logical model has high expressiveness
because the contents of commitments are CTL∗-like path formulae [12] rather
than only state formulae, and their semantics is expressed not in terms of rigid
deadlines, but in terms of accessible paths. In addition to providing flexibility
and expressiveness, the proposed model is based on a Kripke-like structure and
accessibility relations for commitments and associated operations, which makes
our semantics computationally grounded [27]. By doing this, the paper addresses
the automatic verification of the proposed model with respect to the NetBill pro-
tocol against some given properties, which we capture in our semantics as they
are desirable when modeling interaction protocols in MASs. This verification is
done using symbolic model checking along with implementations with the MC-
MAS [16] and NuSMV [5] model checkers. In fact, the checked properties are
compatible with the protocol properties introduced in [31] to model commitment
protocols at design time.

Paper Overview. The remainder of this paper is organized as follows. Section 2
describes the notion of social commitment and its formal notation extended from
[19]. Given this context, Section 3 presents the syntax and semantics of the
main elements of our logical model. In Section 4, we proceed to discuss some
temporal properties based on the defined semantics and Sections 5 introduces
an implementation of NetBill protocol using the NuSMV and MCMAS model
checkers for verifying agent interactions. The paper ends in Section 6 with a
discussion of relevant literature and future work directions in Section 7.

2 Social Commitments

A commitment is an engagement in the form of contract made by one agent,
the debtor, and directed towards another agent, the creditor, so that some fact,
which is the content of the commitment, is true. The debtor must respect and
behave in accordance with his commitments. These commitments are contex-
tual, manipulable and possibly conditional [21]. Furthermore, commitments are
social and observable by all the participants. Consequently, social commitments
(SC) are different from the concepts of agent’s private mental states such as
beliefs, desires and intentions. Several approaches assume that agents will re-
spect their commitments. However, this assumption is not always guaranteed,
especially in real-life business scenarios where a violation can occur if agents
are malicious, deceptive, malfunctioning or unreliable. It is crucial to introduce
violation operation of social commitments along with their satisfaction and to
use model checking to automatically verify agents’ behaviors regarding to these
operations. In the following, we distinguish between two types of social commit-
ments: unconditional and conditional.
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Definition 1. Unconditional social commitments are related to the state of the
world and denoted by SCp(Ag1, Ag2, φ) where Ag1 is the debtor, Ag2 is the
creditor and φ is a well-formed formula (expressed in some logics) representing
the commitment content.

The basic idea is that Ag1 is committed towards Ag2 that the propositional
formula φ is true. In some cases, for example in business processes, we need
to introduce an identifier for commitment to distinguish it from other commit-
ments. As in [8], we use time-stamps as identifiers, when they are needed, within
the propositional content of commitments. For example, to ensure that a differ-
ent copy of some good items is delivered to each customer so that each customer
will pay for her purchase to the merchant, this will be formally represented as
follows: SCp(customer,merchant, pay(id)) where id is the identifer for recogniz-
ing the payment. Such identifiers may be used to reason and track dependencies
for commitments when their circumstances might be changed as in [13]. In other
situations, agents can only commit about some facts when some conditions are
satisfied. Conditional commitments are introduced to capture this issue.

Definition 2. Conditional social commitments are denoted by SCc(Ag1, Ag2,
τ, φ) where Ag1, Ag2, and φ have the same meanings as in Definition 1 and τ is
a well-formed formula representing the condition.

As for unconditional commitment, we can use identifiers to capture changing in
the condition of commitments e.g., SCc(customer,merchant, pay(id), deliver-
item(id)) means that if the customer pays the merchant for a given item this
item will be deliver to the customer.

2.1 Social Commitment Life Cycle

Having explained the formal definitions of commitments, in this section we
present their life cycle to specify the relationship between commitment’s states.
The UML state diagram of this life cycle proceeds as follows: the commitment
could be Conditional or Unconditional. This is represented by the selection op-
erator (see Figure 1). The first operation an agent can perform on a commit-
ment is creation. When created, a conditional commitment can move either to
Negotiation state to negotiate the condition of commitment among the par-
ticipants or to Condition state to check the satisfaction of the condition. The
conditional commitment could be negotiated many times until reaching either
a mutual agreement about the condition, meaning that the negotiation’s out-
come is a conditional commitment where the condition is negotiated and agreed
upon among the participants, or no agrement can be reached about the condition
where the commitment moves to the Final state. If the condition is not satisfied,
the commitment also moves to the Final state. When the unconditional com-
mitment is created, then it may either move to the one of the following states:
Fulfilled, Violated, Withdrawn, Released, Delegated, Assigned or move to Nego-
tiation state again but here to negotiate the commitment content. When the
participant agents reach an agreement, then the commitment moves to the one
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Fig. 1. Life cycle of social commitment

of the aforementioned states or to the Final state if no agreement is reached. In
this paper, we consider all the operations except negotiation, which needs other
techniques such as game theory or dialogue games that are beyond the scope of
this paper. When the debtor performs the withdrawal action (within a specified
deadline), the commitment is withdrawn. Specifically, only the debtor is able
to perform this action without any intervention from the creditor. The commit-
ment is fulfilled if its content is satisfied by the debtor within the deadline. The
social commitment is violated if its content is violated by the debtor when the
deadline is over. The social commitment can be released by the creditor so that
the debtor is no longer obliged to carry out his commitment. The social com-
mitment can be assigned by the creditor, which results in releasing this creditor
from the commitment and having a new unconditional commitment with a new
creditor. The social commitment can be delegated by the debtor, which results
in withdrawing this debtor from the commitment and delegating his role to an-
other debtor within a new commitment. In our approach, some operations such
as delegation and assignment can be applied on a commitment multiple times
e.g., the delegated commitment can be delegated again or move to another state
such as fulfillment and so on. Only release, fulfillment, violation, and withdrawal
can be applied one time.

3 The Logical Model of Social Commitments

This section introduces the syntax and semantics of the different elements of
our formal language L. This propositional language uses extended Computation
Tree Logic (CTL∗) [12] with past operators extended by two new modalities SCp

for unconditional and SCc for conditional commitments and actions applied to
commitments. We refer to the resulted branching time logic as CTL∗sc. Conven-
tionally, a model of CTL∗ is a tree whose nodes correspond to the states of the
system being considered. In our logic, the branches or paths of the tree represent



Verifiable Semantic Model for Agent Interactions Using Social Commitments 133

all choices in the future that agents have when they participate in conversations,
while the past is linear. The time is discrete and the dynamic behavior of agents
is captured by actions these agents perform on their commitments.

3.1 The Syntax of CTL∗sc

Let Φp be a set of atomic propositions, AGT a set of agent names and ACT a set
of actions used to manipulate commitments. We also use the following conven-
tions: Ag,Ag1, Ag2, Ag3, etc. are agent names in AGT, p, p1, p2, etc. are atomic
propositions in Φp, α, α1, α2, etc. are actions performed by agents in ACT and
φ, ψ, etc. are formulae in L. Table 1 gives the formal syntax of L expressed in
Backus-Naur Form (BNF) grammar where “::=” and “|” are meta-symbols of
this grammar. The intuitive meanings of the most constructs are straightfor-
ward (from CTL∗ with next (X+), previous (X−), until (U+), and since (U−)
operators). A and E are the universal and existential path-quantifiers over the
set of all paths starting from the current moment. Aφ (respectively Eφ) means
that φ holds along all (some) paths starting at the current moment. Notice
that, the content and condition of commitment are path formulae, which are
more expressive than state formulae. Furthermore, there are some useful ab-
breviations based on temporal operators (X+, X−, U+, U−): (sometimes in the
future) F+φ � true U+φ; (sometimes in the past) F−φ � true U−φ; (globally
in the future) G+φ � ¬F+¬φ and (globally in the past) G−φ � ¬F−¬φ. We
also introduce L− ⊂ L as the subset of all formulae without temporal operators.

Table 1. The Syntax of CTL∗sc Logic

S ::= p | ¬S | S ∨ S | S ∧ S | AP | EP | C
P ::= S | α | P ∨ P | X+P | X−P | P U+ P | P U− P
C ::= SCp(Ag1, Ag2,P) | SCc(Ag1, Ag2,P ,P)

α ::= Create(Ag1, C) | Fulfill(Ag1, C) | V iolate(Ag1, C) | Withdraw(Ag1, C)

| Release(Ag2, C) | Assign(Ag2, Ag3, C) | Delegate(Ag1, Ag3, C)

3.2 The Semantics of CTL∗sc

In this section, we define the formal model, which corresponds to the computa-
tional model representing the protocol the agents use to communicate in which
the actions reflect the protocol’s progress. Thereafter, we explain how a real
system, namely NetBill protocol is represented based on the proposed model.

The Formal Model
Our formal model M for L, which is used to interpret the formulae of CTL∗sc, is
based on a Kripke-like structure and defined as follows: M = 〈S, ACT, AGT,T, R,
V, Rscp,Rscc,F〉, where: S = {s0, s1, s2, . . .} is a finite set of states; ACT and AGT
are defined in Section 3.1; T : S → TP is a function assigning to each state the
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corresponding time-stamp from TP; R ⊆ S×ACT×S is a total transition relation,
that is, ∀si ∈ S and αi+1 ∈ ACT, ∃si+1 ∈ S : (si, αi+1, si+1) ∈ R, indicating
labelled transitions between states in branching time in which if there exists a
transition (si, αi+1, si+1) ∈ R, then we have T (si) < T (si+1); V : Φp → 2S is a
valuation function that assigns to each atomic proposition a set of states where
the proposition is true; Rscp : S × AGT × AGT → 2σ, where σ is the set of all
paths, is a function producing an accessibility modal relation for unconditional
commitments; Rscc : S×AGT×AGT → 2σ is a function producing an accessibility
modal relation for conditional commitments; and F : L → L− is a function
associating to each formula in L a corresponding formula in L−.

A path Pi is an infinite sequence of states starting at si. Through this paper we
use a ternary relation (si, αi+1, si+1) interchangeably with infix notation si

αi+1−−−→
si+1 for temporal transition relations. Thus, the paths that path formulae are
interpreted over have the form Pi = si

αi+1−−−→ si+1
αi+2−−−→ si+2 . . . with i ≥ 0. The

set of all paths starting at state si is denoted by σsi . When there is no need to
show the actions, the paths will be represented as follows: Pi = 〈si, si+1, . . .〉.

The function Rscp associates to a state si the set of paths starting at si along
which an agent commits towards another agent. Such paths are conceived as
merely “possible”, and as paths where the commitments contents made in si are
true. The computational interpretation of this accessibility relation is as follows:
the paths over the model M are seen as computations, and the accessible paths
from a state si are the computations satisfying (i.e. computing) the formulae
representing the contents of commitments made at that state by a given agent
towards another given agent. For example, if we have: P ′

i ∈ Rscp(si, Ag1, Ag2),
then the commitments that are made in the state si by Ag1 towards Ag2 about
φ are satisfied along the path P ′

i ∈ σsi . Rscc is similar to Rscp and it gives
us the paths along which the resulting unconditional commitment is satisfied
if the underlying condition is true. Because it is possible to decide if a path
satisfies a formula (see the semantics in this section), the model presented here is
computationally grounded [27]. In fact, the accessible relations map commitment
content formulae into a set of paths that simulate the behavior of interacting
agents. The accessibility modal relations Rscp and Rscc are serials [2] and the
logic of unconditional and conditional commitments is an KD4 modal logic. The
function F is used to remove the temporal operators from a formula in L. For
example: F(X+X+p) = p and F(SCp(Ag1, Ag2, X+p1)) = SCp(Ag1, Ag2, p1).

The Semantics of Temporal Operators and Commitments
Having explained our formal model, in this section we define the semantics of
the elements of L relative to a model M , state si and path Pi. The notation
〈si, Pi〉 refers to the path Pi starting at si (i.e., Pi ∈ σsi ). If Pi is a path starting
at a given state si, then prefix of Pi starting at a state sj (T(sj) < T(si)) is a
path denoted by Pi ↓ sj and suffix of Pi starting at a state sk (T(si) < T(sk))
is a path denoted by Pi ↑ sk. Because the past is linear, sj is simply a state in
the unique past of si such that Pi is a part of Pi ↓ sj . The state sk is in the
future of si over the path Pi such that Pi ↑ sk is part of Pi. Using prefix and
suffix notions, the following holds: Pi = Pi ↑ si = Pi ↓ si. If si is a state, then
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we assume that si−1 is the previous state in the linear past and si+1 is the next
state on a given path.

To define the semantics of the formulae in the object language L, we use
the following meta-symbols: & means “and”, and ⇒ means “implies that”. The
logical equivalence is denoted ≡. As in CTL∗, we have two types of formulae:
state formulae evaluated over states and path formulae evaluated over paths
[12]. M, 〈si〉 |= φ means “the model M satisfies the state formula φ at si”.
M, 〈si, Pi〉 |= φ means “the model M satisfies the path formula φ along the path
Pi starting at si”. A state formula φ is satisfiable iff there are some M and si

such that M, 〈si〉 |= φ. A path formula φ is satisfiable iff there are some M , Pi

and si such that M, 〈si, Pi〉 |= φ. A state formula is valid when it is satisfied in all
models M , in all states si in M . A path formula is valid when it is satisfied in all
models M , in all paths Pi in M , in all states si. A path satisfies a state formula
if the initial state in the path does so (i.e., M, 〈si, Pi〉 |= φ iff M, 〈si〉 |= φ). The
formal semantics of CTL∗ and SCp and SCc is illustrated in Table 2.

Table 2. Semantics of CTL∗ and SCp and SCc modalities

M1. M, 〈si〉 |= p iff si ∈ V(p) where p ∈ Φp

M2. M, 〈si〉 |= ¬φ iff M, 〈si〉 � φ

M3. M, 〈si〉 |= φ ∨ ψ iff M, 〈si〉 |= φ or M, 〈si〉 |= ψ

M4. M, 〈si〉 |= φ ∧ ψ iff M, 〈si〉 |= φ and M, 〈si〉 |= ψ

M5. M, 〈si〉 |= Aφ iff ∀Pi ∈ σsi : M, 〈si, Pi〉 |= φ

M6. M, 〈si〉 |= Eφ iff ∃Pi ∈ σsi : M, 〈si, Pi〉 |= φ

M7. M, 〈si〉 |= SCp(Ag1, Ag2, φ) iff ∀Pi ∈ Rscp(si, Ag1, Ag2) : M, 〈si, Pi〉 |= φ

M8. M, 〈si〉 |= SCc(Ag1, Ag2, τ, φ) iff ∀Pi ∈ Rscc(si, Ag1, Ag2) : M, 〈si, Pi〉 |= τ
⇒M, 〈si, Pi〉 |= SCp(Ag1, Ag2, φ)

M9. M, 〈si, Pi〉 |= φ iff M, 〈si〉 |= φ

M10. M, 〈si, Pi〉 |= ¬φ iff M, 〈si, Pi〉 � φ

M11. M, 〈si, Pi〉 |= φ ∨ ψ iff M, 〈si, Pi〉 |= φ or M, 〈si, Pi〉 |= ψ

M12. M, 〈si, Pi〉 |= φ ∧ ψ iff M, 〈si, Pi〉 |= φ and M, 〈si, Pi〉 |= ψ

M13. M, 〈si, Pi〉 |= X+φ iff M, 〈si+1, Pi ↑ si+1〉 |= φ

M14. M, 〈si, Pi〉 |= φ U+ ψ iff ∃j ≥ i : M, 〈sj , Pi ↑ sj〉 |= ψ &
∀i ≤ k < j ,M, 〈sk, Pi ↑ sk〉 |= φ

M15. M, 〈si, Pi〉 |= X−φ iff M, 〈si−1, Pi ↓ si−1〉 |= φ

M16. M, 〈si, Pi〉 |= φ U− ψ iff ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= ψ &
∀j < k ≤ i ,M, 〈sk, Pi ↓ sk〉 |= φ

The semantics of state formulae is given from M1 to M8 and that of path
formulae is given from M9 to M16. For space limit reasons, we only explain
the semantics of formulae that are not in CTL∗. M7 gives the semantics of
propositional commitment, where the state formula is satisfied in the model M
at si iff the content φ is true in all accessible paths Pi starting at si using Rscp.
Similarly, M8 gives the semantics of conditional commitment, where the state
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formula is satisfied in the model M at si iff in all accessible paths Pi using Rscc

if the condition τ is true, then the underlying unconditional commitment is also
true. The semantics of past operators X− and U− is given by considering the
linear past of the current state si as prefix of the path Pi.

The Semantics of Action Formulae
Having defined the semantics of commitments, below we define the semantics
of some socially relevant operations used to manipulate those commitments and
to capture the dynamic behaviors of agents. Such operations are of two cat-
egorizes: two-party operations (which need only two agents to be performed):
Create, Withdraw, Fulfill, Violate and Release, and three-party operations: As-
sign and Delegate because assign and delegate need a third agent to which the
new commitment is assigned or delegated. The context and detailed exposition
of these operations are given in [17,18,21]. In fact, the semantics of these op-
erations is compatible with the philosophical interpretation of actions in which
by performing an action the agent selects a path or history among the available
paths or histories at the moment of performing the action.

Creation action: The semantics of creation action of a propositional commit-
ment (see Table 3) is satisfied in the model M at state si along path Pi iff the
commitment is established in si+1 as a result of performing the creation action
and the created commitment holds along the suffix Pi ↑ si+1 of the path Pi.

Table 3. Semantics of creation action relative to SCp

M17. M, 〈si, Pi〉 |= Create(Ag1, SC
p(Ag1, Ag2, φ)) iff

(si, Create, si+1) ∈ R & M, 〈si+1, Pi ↑ si+1〉 |= SCp(Ag1, Ag2, φ)

The semantics of creation action of a conditional commitment (see Table 4)
is defined in the same way.

Table 4. Semantics of creation action relative to SCc

M18. M, 〈si, Pi〉 |= Create(Ag1, SC
c(Ag1, Ag2, τ, φ)) iff

(si, Create, si+1) ∈ R & M, 〈si+1, Pi ↑ si+1〉 |= SCc(Ag1, Ag2, τ, φ)

Example 1. Let us consider the NetBill protocol, which corresponds to the for-
mal model M discussed at the beginning of this section. The purpose is to use
this protocol as a running example to illustrate the semantics of different action
formulae. As shown in Figure 2, the protocol begins with a Customer (Cus)
requesting a quote for some goods (rfq) at state s0, followed by the Merchant
(Mer) sending the quote as an offer at state s1, but the Cus agent can release af-
ter receiving the offer. Moreover, when the customer pays for the goods, then the
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merchant will deliver the goods, withdraw, assign the delivery to another mer-
chant or not deliver the requested goods. The offer message at state s1 means
that Mer creates a conditional commitment Create (Mer,SCc(Mer, Cus, pay,
delivergoods)) meaning that if the payment is received, then Mer commits to
deliver the goods to Cus. 〈s1, s2, s3, . . .〉, 〈s1, s2, s4, s6, . . .〉 and 〈s1, s2, s4, s8, . . .〉
are not accessible paths for this commitment (i.e. are not in Rscc(s1,Mer, Cus).
However, 〈s1, s2, s4, s5, . . .〉 is an accessible path (i.e. is in Rscc(s1,Mer, Cus).
When the condition is true through 〈s1, s2, s4, s5, . . .〉 (the customer pays), the
conditional commitment becomes unconditional commitment: SCp(Mer, Cus,
delivergoods) along the same accessible path. When the Cus agent receives an
offer he can negotiate the circumstances of this commitment to reach a mutual
agreement. In this sense, the Mer agent needs to use different identifiers to
distinguish between different offers as we explained in Section 2.

 

S1

S2

S4

Cus: rfq

Mer: offer

Cus: pay

Mer: deliver

Cus: release

Mer: withdraw

S0

S3

S6S5

S8Mer: not deliver

Mer: assign 
to Mer1

S7

Mer1: offer
Cus: delegate

to BankS9

Bank: pay

Fig. 2. Representation of NetBill Protocol

Withdrawal action: The semantics of withdrawal action of a propositional
commitment (see Table 5) is satisfied in the model M at si along path Pi iff (i)
the commitment was established in the past at sj (after performing the creation
action) through the prefix Pi ↓ sj (ii) the withdrawal action is performed, which
means (si,Withdraw, si+1) ∈ R and the prefix Pi+1 ↓ sj is not one of the
accessible paths using Rscp and (iii) at the current state si, there is still a
possibility of satisfying the commitment since there is a path P ′

i whose the prefix
P ′

i ↓ sj is still accessible using Rscp. Notice, furthermore, that the first argument
of Rscp is sj where the commitment has been established as in our approach the
accessible paths start from the state where the commitment is established (i.e.,
the next state after the creation operation).

Table 5. Semantics of withdrawal action

M19. M, 〈si, Pi〉 |= Withdraw(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ)) &

(ii) (si,W ithdraw, si+1) ∈ R & Pi+1 ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃P ′
i ∈ σsi : P ′

i ↓ sj ∈ Rscp(sj , Ag1, Ag2)
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P'i sj

Create(Ag1,  SCp(Ag1, Ag2, Ø))
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P'i
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or

Si+1Sj
Si

Fig. 3. Withdraw and Release actions at the state si along path Pi

Intuitively, when a commitment is withdrawn along a path, the prefix of this
path from the established state does not correspond to an accessible path (con-
dition ii). Furthermore, a commitment can be withdrawn when its satisfaction
is still possible (condition iii), which is captured by the existence, starting at
the current moment, of an accessible path the agent can choose (see Figure 3).
In other words, the agent Ag1 has another choice at the current state, which is
continuing in the direction of satisfying its commitment.

Example 2. The Mer agent, before delivering the goods to the Cus agent, can
withdraw the offer. Thus, there is no accessible path for the commitment between
Mer and Cus at s6. At the same time, Mer still has a possibility to satisfy its
offer at state s4 through the accessible path 〈s1, s2, s4, s5 . . .〉 (see Figure 2).

Fulfillment action: The semantics of fulfillment action (see Table 6) is defined
in the same way as withdrawal action. In (ii), all paths starting at state si+1

(the state resulting from the fulfillment action) using Rscp at state sj (where
the commitment has been established) are accessible paths; and in (iii), at the
current state si, there is still a possible choice of not satisfying the commitment
since a non-accessible path P ′′

i ↓ sj starting at si exists. We notice that being
accessible means that the content φ is true along all the paths P ′

i+1 ↓ sj and
fulfillment occurs automatically when the content holds by the deadline. As for
withdrawal, fulfillment action makes sense only when a non-fulfilment action is
still possible.

Table 6. Semantics of fulfillment action

M20. M, 〈si, Pi〉 |= Fulfill(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ) &

(ii) (si, Fulfill, si+1) ∈ R & ∀P ′
i+1 ∈ σsi+1 : P ′

i+1 ↓ sj ∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃P ′′
i ∈ σsi : P ′′

i ↓ sj /∈ Rscp(sj , Ag1, Ag2)

Example 3. When the Cus agent pays for the goods and the Mer agent delivers
the goods before the deadline expires, Mer satisfies his commitment through
all the accessible paths 〈s1, s2, s4, s5, . . .〉 for all possible continuations from s5.
At the moment of satisfying the commitment, Mer has still a possibility of not
satisfying it through the non-accessible path 〈s1, s2, s4, s8, . . .〉 (see Figure 2).



Verifiable Semantic Model for Agent Interactions Using Social Commitments 139

Violation action: The semantics of violation action (see Table 7) is almost
similar to the semantics of withdrawal action. The main difference is related to
the fact that when a commitment is violated within a specific time, then all
paths P ′

i+1 starting at state si+1 (after violation action has been performed),
their suffix P ′

i+1 ↓ sj are non-accessible paths using Rscp at state sj (condition
ii). Whereas, in withdrawal action there is one path which is non-accessible along
which withdrawal action has been performed. As for fulfillment action, a non-
accessible path means that the content of commitment φ is false. Here again,
violation action makes sense when a choice of satisfying the commitment is still
possible at the current state (condition iii).

Table 7. Semantics of violation action

M21. M, 〈si, Pi〉 |= V iolate(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ) &

(ii) (si, V iolate, si+1) ∈ R & ∀P ′
i+1 ∈ σsi+1 : P ′

i+1 ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃P ′′
i ∈ σsi : P ′′

i ↓ sj ∈ Rscp(sj , Ag1, Ag2)

Example 4. When the Cus agent pays for the goods, but the Mer agent does
not deliver them within a specified time, then Mer violates his commitment.
Through the path 〈s1, s2, s4, s8, . . .〉 the content Delivergoods is false (see
Figure 2).

Release action: The semantics of release action (see Table 8) is similar to the
semantics of withdrawal action. The only difference is that the release action is
performed by the creditor while withdrawal action is performed by the debtor
(see Figure 3).

Table 8. Semantics of release action

M22. M, 〈si, Pi〉 |= Release(Ag2, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ)) &

(ii) (si, Release, si+1) ∈ R & Pi+1 ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃P ′
i ∈ σsi : P ′

i ↓ sj ∈ Rscp(sj , Ag1, Ag2)

Example 5. The Cus agent, before paying for the goods, can release the offer.
Thus, no accessible path exists between the Cus and Mer agents from s1. How-
ever, an accessible path still exists from s2 (see Figure 2).

Assignment action: The semantics of assignment action of a propositional
commitment (see Table 9) is satisfied in the model M at si along path Pi iff (i)
the creditor Ag2 releases the current commitment at si through Pi and (ii) a
new commitment with the same debtor and a new creditor is created at state si

along path Pi, so that the formula SCp(Ag1, Ag3, φ′) is true in the model M at
si+1. The most important issue in this semantics is that the content φ′ of the
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new commitment is not necessarily the same as for the assigned one φ, but there
is a logical relationship between them. This is because the second commitment
is established after the previous one. Thus, we need to consider the temporal
component specifying the deadline of the first commitment.

Table 9. Semantics of assignment action

M23. M, 〈si, Pi〉 |= Assign(Ag2, Ag3, SC
p(Ag1, Ag2, φ)) iff

(i) M, 〈si, Pi〉 |= Release(Ag2, SC
p(Ag1, Ag2, φ)) &

(ii) ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ) & (si, Create, si+1) ∈ R &

M, 〈si+1〉 |= SCp(Ag1, Ag3, φ
′) such that

(1) ∀P ′
i+1 ∈ σsi+1 , M, 〈sj , P

′
i+1 ↓ sj〉 |=φ⇔M, 〈si+1, P

′
i+1〉 |= φ′ &

(2) F(φ) ≡ F(φ′)

The logical relationship between φ and φ′ is as follows: (1) φ′ is true at the
state si+1 through a given path P ′

i+ iff φ is true at sj where the original commit-
ment has been established through the prefix P ′

i+1 ↓ sj and (2) the two contents
are logically equivalent when the temporal operators are removed. We consider
the current state si+1 in (1) as the new content φ′ should be true starting from
the moment where the new commitment is created (see Figure 4). To clarify this
notion, suppose that the content of the assigned commitment is φ = X+X+p
where p is an atomic proposition and the assignment action takes place at the
next moment after the creation action. The content of the resulting commitment
should be then φ′ = X+p, which is the content we obtain by satisfying the con-
ditions (1) and (2). By (1) we have X+p is true at a state si+1 through a path
P ′

i+1 iff X+X+p is true at the state sj (sj = si−1) through P ′
i+1 ↓ sj and by

(2) we have F(X+X+p) ≡ F(X+p). The second condition is added to guarantee
that the relationship between the contents is not arbitrary.
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P'i+1

Sj
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Si+1

Fig. 4. Assign action at the state si along the path Pi

Example 6. Suppose the Cus agent commits to pay $200 to the Mer agent
in two days. After one day, Mer, for some reasons, assigns this commitment
to another agent Mer1 at s7. We suppose that Cus and Mer1 have reached
to agreement after negotiating the conditions of this commitment, then Mer
releases this commitment and a new commitment between Cus and Mer1 is
created to pay $200 after only one day.
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In the semantics proposed in previous frameworks (for example in [17,18] and
[23]), the two commitments have the same content, which implicitly suppose
that the creation of the commitment and its assignment take place at the same
moment. The previous example cannot be managed using this assumption.

Delegation action: The semantics of delegation action (see Table 10) is similar
to the semantics of assignment. The only difference is that delegation is per-
formed by the debtor while assignment is performed by the creditor. Therefore,
instead of release action, the semantics is defined in terms of withdrawal action.

Table 10. Semantics of delegation action

M24. M, 〈si, Pi〉 |= Delegate(Ag1, Ag3, SC
p(Ag1, Ag2, φ)) iff

(i) M, 〈si, Pi〉 |= Withdraw(Ag1, SC
p(Ag1, Ag2, φ)) &

(ii) ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ) & (si, Create, si+1) ∈ R &

M, 〈si+1〉 |= SCp(Ag3, Ag2, φ
′) such that

(1) ∀P ′
i+1 ∈ σsi+1 , M, 〈sj , P

′
i+1 ↓ sj〉 |= φ⇔M, 〈si+1, P

′
i+1〉 |= φ′ &

(2) F(φ) ≡ F(φ′)

Example 7. Suppose the Cus agent commits to pay $200 to the Mer agent
in two days. After one day, Cus, for some reasons, delegates this commitment
to a financial company (Bank) to pay $200 to Mer on his behalf. Thus, Cus
withdraws his commitment and a new commitment between Bank and Mer is
created to pay $200 after only one day.

4 Commitment Properties

The aim of this section is to prove that the model aforementioned in the previous
section presents a satisfactory logic of commitment. We show some of desirable
properties related to the semantics of commitment operations, which are funda-
mental for soundness considerations (i.e., this semantics never produces a com-
putation that does not satisfy these properties) and for checking commitment
protocols. Such properties hold when the commitments are aligned [8] among the
agents. That is, the interacting agents observe all the exchanged commitments
(although they use asynchronous messages to communicate) and do agree on the
meanings of messages exchanged. In the rest of this paper, the set of all models
is denoted by M and “→” stands for logical implication.

Proposition 1. Once fulfilled, a commitment cannot be fulfilled again in the
future.

AG+
[
Fulfill(Ag1, SCp(Ag1, Ag2, φ)) →

X+AG+¬Fulfill(Ag1, SCp(Ag1, Ag2, φ))
]
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Proof. Let M be a model in M, si a state in S, and Pi a path in σ. Also, suppose
that: M, 〈si, Pi〉 |= Fulfill(Ag1, SCp(Ag1, Ag2, φ))

(Semantics of fulfillment action)

⇒ ∃j ≤ i : M, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ) &
(si, Fufill, si+1) ∈ R & ∀P ′

i+1 ∈ σsi+1 : P ′
i+1 ↓ sj ∈ Rscp(sj , Ag1, Ag2) (1)

Let us now suppose that:

M, 〈si, Pi〉 |= X+EF+ Fufill(Ag1, SCp(Ag1, Ag2, φ))

(Semantics of fulfillment action, X+ and EF+ operators)

⇒ ∃k ≥ i+1 : (sk, Fufill, sk+1) ∈ R & ∃P ′
k ∈ σsk : P ′

k ↓ sj /∈ Rscp(sj , Ag1, Ag2)

There is then a contradiction with (1) because P ′
k is a suffix of at least one of

the accessible paths P ′
i+1 starting at si+1. Consequently:

M, 〈si, Pi〉 |= ¬X+EF+Fulfill(Ag1, SCp(Ag1, Ag2, φ))
So, we obtain: M, 〈si, Pi〉 |= X+AG+¬Fulfill(Ag1, SCp(Ag1, Ag2, φ))

We can generalize this proposition to the following one and prove it in the same
way using the semantics of withdrawal, fulfillment, violation, release, assignment
and delegation actions, X+ and EF+ operators.

Proposition 2. Once fulfilled, violated, withdrawn or released a commitment
cannot be fulfilled, violated, withdrawn, released, assigned or delegated again in
the future.

∀Ag ∈ AGT, AG+
[
Ful-V io-Wit-Rel(Ag1, SCp(Ag1, Ag2, φ)) →

X+AG+¬[
Fulfill(Ag1, SCp(Ag1, Ag2, φ))

∨ V iolate(Ag1, SCp(Ag1, Ag2, φ))
∨Withdraw(Ag1, SCp(Ag1, Ag2, φ))
∨Release(Ag2, SCp(Ag1, Ag2, φ))
∨Assign(Ag2, Ag, SCp(Ag1, Ag2, φ))
∨Delegate(Ag1, Ag, SCp(Ag1, Ag2, φ))

]]

where Ful-V io-Wit-Rel ∈ {Fulfill, V iolate,Withdraw,Release}
In our approach, the semantics of two-party operations, such as withdrawal and
fulfillment actions, is stable meaning that when each one of them has been
performed, then it holds forever. While, the semantics of three-party operations
is not stable. These actions have the property of “leaving the agents sensitive to
race conditions over commitments” [8].

5 Verifying Agent Interactions

A rigorous semantics opens up the way for the automatic verification of logic-
based protocols that govern business behaviors of autonomous agents and con-
formance of MASs specifications against some temporal properties. Specifically,
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this section presents model checking to verify the proposed logical model with
respect to a NetBill protocol. The protocol and temporal properties are specified
by the proposed language L. Finally, we present an implementation and report
on experimental results of this protocol using the NuSMV and MCMAS tools.

5.1 Concrete Interpretations

Having defined, in Section 3.2, a Kripke-like structure M = 〈S, ACT, AGT,T, R,V,
Rscp, Rscc,F〉 and accessibility relations that make our semantics computation-
ally grounded, here we give a concrete interpretation of this model from the
perspective of a transition system by adding a function L and initial state s0
and giving a concrete (computational) interpretation of accessibility relations
Rscp and Rscc using the existential operator E. Such a computational interpre-
tation of the philosophical intuition of the accessibility relations is important
for concrete model checking. The function L : S → 2AGT×AGT associates to each
state a set of pairs and each pair represents the two interacting agents, which
are the debtor and creditor of a commitment made in this state. Consequently,
our interpreted system is defined as follows: M ′ = 〈S, ACT, AGT,T, R,V,L,F, s0〉.
By doing this, we can define the concrete interpretation of commitments and
associated operations as shown in Table 11. For example, a commitment made
by Ag1 towards Ag2 is satisfied at state si iff there is a path starting at this state
(i.e., a possible computation) along which the commitment holds. The intuitive
interpretation is as follows: when an agent Ag1 commits towards another agent
Ag2 to bringing about φ at state si, this means that there is at least a possible
computation starting at this state satisfying φ.

For withdraw action, a computation Pi starting at si satisfies Withdraw(Ag1,
SCp(Ag1, Ag2, φ)) in the model M ′ iff the commitment has been established in
the past and Withdraw is in the label of the first transition on this path such
that along the prefix of this computation, the content of commitment is false
and at the current moment there is another possible computation to satisfy
the content of commitment. In the same way, we redefine the semantics of ful-
fillment, violation, and release actions (see Table 11). Note, furthermore, that
the semantics of create, assign, and delegate actions is already in the concrete
interpretation as these actions do not need accessability relation.

5.2 Symbolic Model Checking

In a nutshell, given the model M ′ representing NetBill protocol and a logical
formula φ describing a property, the model checking is defined as the problem
of establishing whether the model M ′ satisfies φ (i.e., M ′ |= φ) or not (i.e.,
M ′ � φ). Like proposed in [10] for CTL∗ logic, in our approach the problem of
model checking of CTL∗sc formulae can be reduced to the problem of checking
LTLsc and CTLsc formulae, which correspond to LTL and CTL formulae [10]
augmented with social commitments and associated operations. Specifically, we
use the MCMAS [16] and NuSMV [5] symbolic model checkers to verify the
NetBill protocol against some temporal properties. MCMAS focuses on checking
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the properties expressed in CTLsc, while NuSMV is used to check the properties
expressed in LTLsc, which is not included in MCMAS specification, as well as
the properties expressed in CTLsc. Moreover, we elect these two symbolic model
checkers as they efficiently perform the automatic verification over extremely
large state space and make our representation more compact.

Table 11. A concrete interpretation of action formulae

Concrete Interpretation

SCp M ′, 〈si〉 |= SCp(Ag1, Ag2, φ) iff (Ag1, Ag2) ∈ L(si) & M ′, 〈si〉 |= Eφ

SCc M ′, 〈si〉 |= SCc(Ag1, Ag2, τ, φ) iff (Ag1, Ag2) ∈ L(si) &

M ′, 〈si〉 |= E(τ → SCp(Ag1, Ag2, φ))

Withdrawal M ′, 〈si, Pi〉 |= Withdraw(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M ′, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ)) &

(ii) (si,W ithdraw, si+1) ∈ R & M ′, 〈sj , Pi+1 ↓ sj〉 |= ¬φ &

(iii) ∃P ′
i ∈ σsi : M ′, 〈sj , P

′
i ↓ sj〉 |= φ

Fulfillment M ′, 〈si, Pi〉 |= Fufill(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M ′, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ)) &

(ii) (si, Fulfill, si+1) ∈ R & ∀P ′
i+1 ∈ σsi+1 : M ′, 〈sj , P

′
i+1 ↓ sj〉 |= φ &

(iii) ∃P ′′
i ∈ σsi : M ′, 〈sj , P

′′
i ↓ sj〉 |= ¬φ

Violation M ′, 〈si, Pi〉 |= V iolate(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M ′, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ)) &

(ii) (si, V iolate, si+1) ∈ R & ∀P ′
i+1 ∈ σsi+1 : M ′, 〈sj , Pi+1 ↓ sj〉 |= ¬φ &

(iii) ∃P ′′
i ∈ σsi : M ′, 〈sj , P

′′
i ↓ sj〉 |= φ

Release M ′, 〈si, Pi〉 |= Release(Ag1, SC
p(Ag1, Ag2, φ)) iff

(i) ∃j ≤ i : M ′, 〈sj , Pi ↓ sj〉 |= SCp(Ag1, Ag2, φ)) &

(ii) (si, Release, si+1) ∈ R & M ′, 〈sj , Pi+1 ↓ sj〉 |= ¬φ &

(iii) ∃P ′
i ∈ σsi : M ′, 〈sj , P

′
i ↓ sj〉 |= φ

In fact, MCMAS is introduced particulary for multi-agent systems with ISPL
(Interpreted Systems Programming Language), which allows us to describe
agents. It is based on Ordered Binary Decision Diagrams (OBDDs) technique.
The multi-agent system is distinguished into environment agent and standard
agents. Environment agent is used to describe boundary conditions, infrastruc-
tures and the observation variables shared by standard agents. The agents are
modeled as non-deterministic automaton in the form of a set of of instantaneous
local states, a set of actions, protocol functions and evolution functions1. The
main step in our verification workflow is to translate protocol specification into
ISPL program. We start by translating the set of interacting agents directly into

1 The ISPL code of our approach can be downloaded from:
http://users.encs.concordia.ca/~bentahar/Publications/code/MCMAS.zip

http://users.encs.concordia.ca/~bentahar/Publications/code/MCMAS.zip
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standard agents in Agent section and social commitments into local variables in
Vars section. Such variables are enumeration type including all possible com-
mitment states, which directly verify whether the protocol is in a conformant
state or not. Finally, actions on commitments are directly expressed in Actions
section in which these actions work as constraints to trigger or stop transitions
between commitment states.

On the other hand, NuSMV is a symbolic model checker for CTL and LTL
written in ANSI C. It is a reimplementation and extension of SMV, the most
widely cited model checker based on Ordered Binary Decision Diagrams (OB-
DDs). It is able to process files written in an extension of the SMV language.
In this language, the different components and functionalities of the system are
described by finite state machines (FSMs) and translated into an isolated mod-
ules. In our approach, the set of interacting agents are translated into an isolated
modules and instantiated in the main module and the commitment states are
defined in SMV variables, VAR. Such states with actions are used as reasoning
rules to evolve the state changes. The transition relation between states and
actions is described within ASSIGN section where all necessary transitions are
captured, initial conditions are defined within init statement and evolution is
defined within next statement2.

In order to simplify the notations in the next section, rather than using com-
mitments and associated operations explicitly as we discussed in Section 3.2, we
use the messages in Figure 2 of NetBill protocol representation. For example, we
simply use offer(Mer) message in lieu of using create action with the associated
parameters.

5.3 Experimental Verification Results

We have defined the commitment properties in Section 4, here we introduce
other kinds of properties that are important in modeling commitment protocols.
These properties can be classified into: Fairness, Safety, Liveness and Reachability
properties, which are inspired by similar properties commonly used to check
communication protocols in distributed systems.

1. Fairness constraint: It is needed to rule out unwanted behaviors of agents
(e.g. a communication channel being continuously noisy or a printer being
locked forever by a single agent) [10]. In our semantics, if we define the for-
mula: AG+(AF+ ¬Delegate(Bank)) as a fairness constraint, then a com-
putation path is fair iff infinitely often the Bank agent does not delegate
commitments. This constraint will enable us to avoid situations such as: a
bank B has firstly accepted a delegated commitment but for some reason, it
needs to delegate this commitment to another bank B1, which delegates the
commitment back to the bank B. The banks B and B1 delegate the commit-
ment back and forth infinitely. Thus, by considering fairness constraints, the

2 The SMV code of our approach can be downloaded from:
http://users.encs.concordia.ca/~bentahar/Publications/code/NuSMV.zip

http://users.encs.concordia.ca/~bentahar/Publications/code/NuSMV.zip
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protocol’s fairness paths include only the paths that the interacting agents
can follow to satisfy their desired states fairly.

2. Safety: Means that “something bad never happens”. For example, a bad
situation, which should be avoided, is the existence of a path so that in its
future the Mer agent delivers the goods, but it is not the case that there
is no delivery until the payment has been received: ¬EF (Deliver(Mer) ∧
¬A(¬Deliver(Mer) U+Pay(Cus))).

3. Liveness: Means that “something good will eventually happen”. For exam-
ple, whenever the Mer agent is in “withdraw” state or “not deliver” state,
then he will eventually, in all paths starting at these states, refund the
payment to the Cus agent: AG+(Withdraw(Mer) ∨Not Deliver(Mer) →
AF+Refund(Mer)).

4. Reachability: A particular situation can be reached from the initial state via
some computation sequences. For example, in all paths where the Cus agent
is always in a request state, a certain state of delivering goods by the Mer
agent is eventually reachable: AG+(Request(Cus) → EF+Deliver(Mer)).
Also, this property could be used to show the absence of deadlock in our pro-
tocol. Formally: AG+(Request(Cus) ∧ AG+¬Deliver(Mer)), which means
that the deadlock is the negation of the reachability property.

The above are only some examples of the possibilities of our language L. In the
following, we present the results of three experiments we have conducted to verify
the NetBill protocol explained in Section 3.2 with the MCMAS and NuSMV
model checkers. In the first experiment we only consider two agents (Cus and
Mer agents), in the second one we add the assigned agent (i.e., Mer1 agent)
and in the third one we add the delegated agent (i.e., Bank agent). Figure 5

Fig. 5. The report generated by the MCMAS tool



Verifiable Semantic Model for Agent Interactions Using Social Commitments 147

and Figure 6 depict the results of checking such properties of action formulae
and the properties discussed above in the third experiment using MCMAS and
NuSMV respectively. We only report on the results obtained by MCMAS and
NuSMV for checking CTLsc formulae on a laptop running under Windows Vista
and equipped with 1.67 GHz Intel(R) Core 2 Duo and 2038 MB of RAM.

Fig. 6. The report generated by the NuSMV tool

Table 12. OBDDs Statistics Comparison

First Experiment Second Experiment Third Experiment

NuSMV MCMAS NuSMV MCMAS NuSMV MCMAS

OBDDs Variables 33 24 53 39 73 50

Model Size |M̀| 1010 107 1016 1011 1022 1015

No. of Agents 2 2 3 3 4 4

Total Time ≈ 0.15s ≈ 0.26s ≈ 0.34s ≈ 0.45s ≈ 0.56s ≈ 2s

Table 12 depicts the statistics data of OBDDs for these tools. To evaluate
the performance of model checking, we need to analyze the space (i.e., the size
of the model) and time requirements (i.e., the time of building the model and
time of verification). For example, the number of Boolean variables required to
encode this protocol, in the third experiment, is 73 Boolean variables in NuSMV
and 50 Boolean variables in MCMAS, then the size of the model (with 4 agents)
is 273 ≈ 1022 and 250 ≈ 1015 respectively. The sixth row in Table 12 shows
the time results obtained in the verification of the NetBill protocol using the
model checkers NuSMV and MCMAS. Notice that, the total time increases when
augmenting the number of agents from 2 to 4 agents (see Figure 7) and the
verification time in the three experiments is approximately < 0.01s. To conclude
this section, the MCMAS model checker is friendly user interface, underpins
different logics (e.g., CTL-logic and epistemic logic), supports agents’ definitions
and performs moderately better than the NuSMV in terms of the model size.



148 M. El-Menshawy, J. Bentahar, and R. Dssouli

 

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

To
ta

l T
im

e

No. of Agents

NuSMV

MCMAS

Fig. 7. Comparison of the three experimental results based on the total time

However, NuSMV is better than MCMAS in terms of the total time as some
optimization techniques implemented in it, such as on-fly-model checking and
cashing.

6 Relevant Literature and Discussion

From the perspective of social commitments, various semantic frameworks have
previously been put forward for Agent Communication Language (ACL) us-
ing temporal logic. This is because social semantics allow tracing the status of
existing commitments at any point in time given observed actions [26] and veri-
fying interacting agents [3,6,28]. In this sense, it is unlike mental semantics that
specifies the semantics of communicative acts in terms of pre-and post-conditions
contingent on so-called agent’s mental states (e.g. beliefs, desires and intentions).

In terms of defining commitment protocols, the commitments capture a high-
level meaning of interactions among the agents and provide a rigorous basis for
specifying multi-agent protocols in an abstract level. In this line of research,
Yolum and Singh [30] have used commitment operations to show how to build
and execute commitment protocols and how to reason about them using event
calculus. In the same way, Mallya and Singh [18] have showed how to reason
about subsumption among commitment protocols and how to refine and aggre-
gate protocols based on commitment semantics and operations. Desai and Singh
[11] have studied a composition of commitment protocols and concurrent opera-
tions. Yolum in [31] has presented the main generic properties that are required
to develop commitment protocols at design time. These properties are catego-
rized into three classes: effectiveness, consistency and robustness. Our proposal
belongs to the same line of research and can be used to specify commitment pro-
tocols in terms of creation and manipulation of commitments using accessibility
relations. It also complements the above frameworks by introducing the seman-
tics of commitment operations and the automatic verification of these protocols
against some desirable properties using symbolic model checking. Furthermore,
our protocol’s properties meet the requirements introduced in [31] in the sense
that the reachability and deadlock-freedom can be used to satisfy the same ob-
jective of the effectiveness property. The consistency property is achieved in our
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protocol by satisfying the safety property. Moreover, the robustness property is
satisfied by considering liveness property and fairness paths accompanied with
recover states (e.g., refund state) that capture the protocol failures. Hence, our
approach can be applied to verify the protocol’s properties defined in [31]. Fur-
thermore, the commitment operations are fully captured at the semantic level
and not only in terms of reasoning rules which are defined on top of the protocols
as in [17,30].

Furthermore, our logical model provides a novel unified semantics not only for
social commitments, but also for associated operations within the same frame-
work using a new logic that extends CTL∗. Recently, Singh in [23] has delineated
the model-theoretic semantics of commitments by postulating some rules as ways
of using and reasoning with commitments. This model combines two commit-
ments (practical and dialogical), in the sense that when a commitment arises
within an argument and the content is satisfied with the same argument, then
practical commitment would be satisfied. However, this model does not include
the semantics of commitment operations. Chopra and Singh [8] have used the
theoretical model proposed in [23] to study the semantics of commitment opera-
tions with message patterns that implement commitment operations with some
constraints on agents’ behaviors to tackle the problem of autonomy and hetero-
geneity in distributed systems and to define “commitment alignment”[8]. This
semantics is expressed in terms of the set of propositions that can be inferred
from the observation sequence that agents sent or received. Moreover, this se-
mantics must correspond to the postulates introduced in [23], as well as the
content of commitment is restricted in a disjunctive and a conjunctive normal
forms [8]. However, the formal language of those postulates is based on enhanc-
ing LTL with social and dialogical commitments. Thus, this language is less
expressive than the formal language introduced here, which is more compatible
with agent choices by representing the content of commitment as a path formula.

Our semantics is based on a Kripke-like structure with accessibility relations,
which makes the proposed model computationally grounded [27] and allows its
verification using model checking. Our proposal is different from the semantics
introduced by Singh in [23] which is not based on a Kripke-structure and there-
fore difficult to be model checked. Venkatraman and Singh [28] have presented
an approach for testing locally whether the behavior of an agent in open systems
complies with a commitment protocol specified in temporal logic (CTL). The
proposed approach complements this work by introducing the symbolic model
checking to verify the interactions between agents. Cheng [6] has introduced
model checking using Promela and Spin to verify commitment-based business
protocols and their compositions based on LTL logic. The specification language
proposed here is not only LTLsc, but also CTLsc and we use the MCMAS and
NuSMV model checkers, which underpin these logics and which are computa-
tionally more efficient than automata-based model checkers such as Spin.

In terms of the semantics of commitment operations, Boella et al. in [4] have
defined the semantics of fulfillment of propositional commitment in terms of
creditor’s believes so that the commitment is fulfilled when the creditor does
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not believe that the commitment’s content is false and he cannot challenge it
anymore. However, our semantics is concrete away from the internal design of
agents and provides a social meaning to agent message exchanges (i.e., actions).
The semantics defined here for conditional commitments is different from the se-
mantics defined in [20] and [23]. In [20], conditional commitments are considered
as intentions, while commitments are social artifacts and different from private
intentions. In [23], Singh models conditional commitments as fundamental and
unconditional commitments as special cases where the antecedent is true. In
our semantics, the conditional commitments are transformed into unconditional
commitments in all accessible paths where the underlying condition is true. The
semantics proposed here is close to the semantics introduced in [2], but it does
not suffer from the “recursion” problem as is the case in [2]. Recursion means
the semantics of one operation depends on the semantics of one or more other
operations. Consequently, the model checking technique for this logic is very
complex and suffers from the “state explosion” problem in the early phases. On
the contrary, the semantics we presented here is independent, for each operation,
of the semantics of other operations.

The semantics we have proposed here for assignment and delegation opera-
tions is entirely different from the ones given in [7,9,17] and [18]. Specifically,
the assignment and delegation operations should consider that the content of
the new resulting commitment could be different from, and has a logical rela-
tionship with the content of the assigned and delegated commitment. This issue
is not captured in previous frameworks. In addition, unlike our semantics, the
violation operation has been disregarded. Torroni et al. have defined in [26] an
abstract framework based on computational logic and event calculus to formal-
ize the evolution of commitments in time inspired by Mallya’s work [17]. Unlike
our work, they do not consider the semantics of commitment operations and
logical relationship between delegated commitment and the original one. In fact,
the proposed work can complement this framework with automatic verification
using model checking in lieu of reasoning rules, which are defined in terms of
event calculus to provide run time and static verification.

7 Conclusion

In this paper we have defined a new semantics for social commitment and asso-
ciated operations by enhancing CTL∗. The resulting logic (CTL∗sc) allows us to
specify interesting temporal properties for MASs. This semantics satisfies four
criteria introduced in [22]: formal (based on logic of time), declarative (involves
assertions about commitments), verifiable (using a symbolic model checking),
and meaningful (every message can be expressed in terms of commitments). We
have presented and implemented an approach to automatically verify interacting
agents modeled as a Kripke-like structure using two symbolic model checkers:
MCMAS and NuSMV. We tested our implementation by means of NetBill pro-
tocol through three experimental results. These experiments revealed that our
framework can be employed successfully in verifying communication protocols
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with large state spaces (in the order of 273 ≈ 1022). As future work, these results
are encouraging to be applied in verifying various business processes such as web
service compositions. Also, we plan to use our semantics to specify properties
when commitments are not aligned meaning that the exchanged messages can
be delayed so the participants do not observe the same commitments or the
exchanged messages are understood with different meanings [8].
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